Ramsey (K1,2,K3)-Minimal Graphs

نویسندگان

  • Mieczyslaw Borowiecki
  • Ingo Schiermeyer
  • Elzbieta Sidorowicz
چکیده

For graphs G,F and H we write G → (F,H) to mean that if the edges of G are coloured with two colours, say red and blue, then the red subgraph contains a copy of F or the blue subgraph contains a copy of H. The graph G is (F,H)-minimal (Ramsey-minimal) if G → (F,H) but G′ 6→ (F,H) for any proper subgraph G′ ⊆ G. The class of all (F,H)-minimal graphs shall be denoted by R(F,H). In this paper we will determine the graphs in R(K1,2,K3).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Ramsey (K1, 2, C4)-minimal graphs

For graphs F , G and H , we write F → (G, H) to mean that any red-blue coloring of the edges of F contains a red copy of G or a blue copy of H . The graph F is Ramsey (G, H)-minimal if F → (G, H) but F ∗ 9 (G, H) for any proper subgraph F ∗ ⊂ F . We present an infinite family of Ramsey (K1,2, C4)-minimal graphs of any diameter ≥ 4.

متن کامل

On Ramsey (K1, 2, Kn)-minimal graphs

Let F be a graph and let G, H denote nonempty families of graphs. We write F → (G,H) if in any 2-coloring of edges of F with red and blue, there is a red subgraph isomorphic to some graph from G or a blue subgraph isomorphic to some graph from H. The graph F without isolated vertices is said to be a (G,H)-minimal graph if F → (G,H) and F − e 6→ (G,H) for every e ∈ E(F ). We present a technique ...

متن کامل

All Ramsey (2K2,C4)−Minimal Graphs

Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...

متن کامل

Packing nearly optimal Ramsey R(3, t) graphs

In 1995 Kim famously proved the Ramsey bound R(3, t) ≥ ct/ log t by constructing an n-vertex graph that is triangle-free and has independence number at most C √ n log n. We extend this celebrated result, which is best possible up to the value of the constants, by approximately decomposing the complete graph Kn into a packing of such nearly optimal Ramsey R(3, t) graphs. More precisely, for any ...

متن کامل

Ramsey Numbers R(K3, G) for Graphs of Order 10

In this article we give the generalized triangle Ramsey numbers R(K3, G) of 12 005 158 of the 12 005 168 graphs of order 10. There are 10 graphs remaining for which we could not determine the Ramsey number. Most likely these graphs need approaches focusing on each individual graph in order to determine their triangle Ramsey number. The results were obtained by combining new computational and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2005